ESA/Webb/NASA/CSA
This composite image of nebula NGC 1333 captures minute detail of young stars and brown dwarfs. These details were previously obscured in Hubble Telescope's images of the same nebula.
NASA/ESA/CSA/M. Marin (STScI)
NASA released this image of galaxy Arp 142 on July 12, to mark the two-year anniversary of the James Webb Space Telescope.
NASA, ESA, CSA, STScI, J. Lee (STScI), T. Williams (Oxford), PHANGS Team
This Webb image shows a densely populated spiral galaxy anchored by a central region that has a light blue haze, known NGC 628. It's 32 million light-years away in the constellation Pisces.
NASA/ESA/CSA/ STScI
In this new image of Uranus, the planet shines shine brightly, along with its many rings and moons.
NASA/ESA/CSA/STScI
The James Webb Space Telescope's shot of supernova remnant Cassiopeia A shows elaborate details visible for the first time.
NASA/ESA/CSA/STScI
There are approximately 500,000 stars in this image of the Sagittarius C region of the Milky Way. The bright cyan area contains emissions from ionized hydrogen.
NASA/ESA/CSA/STScI
Galaxy cluster MACS0416 is seen here in exquisite detail thanks to a composite image created with data from both NASA's James Webb and Hubble space telescopes.
NASA/ESA/CSA/STScI/Tea Temim
Scientists are hoping to gain more information about the origins of the Crab Nebula, thanks to new details spotted by the James Webb Space Telescope.
ESA/Webb/NASA/CSA
This image shows the Ring Nebula in exceptional detail, like the filament elements in the ring's inner section.
NASA/ESA/CSA
Earendel, the most distant star ever discovered, can be seen in this image of the Sunrise Arc galaxy.
NASA/ESA/CSA/JWST Ring Nebula Team
The Ring Nebula is seen in breathtaking detail, in a composite image released on August 4.
J. DePasquale/CSA/ESA/NASA
The James Webb Space Telescope captured a high-resolution image of a pair of actively forming stars called Herbig-Haro 46/47. The stellar duo, only a few thousand years old, is located at the center of the red diffraction spikes.
NASA/ESA/CSA/Klaus Pontoppidan, STScI
The James Webb Space Telescope captured a detailed closeup of the birth of sunlike stars in the Rho Ophiuchi cloud, the closest star-forming region located 390 light-years from Earth. The young stars release jets that cause the surrounding gas to glow. The image's release marks the first anniversary of Webb's observations of the cosmos.
NASA
Saturn and its moons were captured by NASA's James Webb Space Telescope June 25. The image shows details of the planet's atmosphere and ring system.
ESA/Webb/NASA/CSA
The James Webb Space Telescope captured the Orion Bar, a part of the Orion Nebula that is being eroded by stellar radiation emanating from the Trapezium Cluster.
NASA/ESA/CSA
This composite image, shot from the James Webb Space Telescope's MIRI and NIRCam instruments, shows the bright clusters of stars and dust from barred spiral galaxy NGC 5068.
NASA/ESA/CSA/STScI
Webb captured a burst of star formation triggered by two colliding spiral galaxies called Arp 220. The phenomenon is the closest ultra-luminous galactic merger to Earth.
NASA/ESA/CSA/A. Pagan/A. Gáspár
Dusty rings surround Fomalhaut, a young star outside of our solar system that's 25 light-years from Earth.
NASA/ESA/CSA/STScI/Webb ERO Production Team
The Wolf-Rayet star WR 124 was one of the James Webb Space Telescope's first discoveries, spotted in June 2022.
NASA/ESA/CSA/D. D. Milisavljevic/T. Temim/I. De Looze
Stunning details can be seen in this Webb telescope photo of supernova remnant Cassiopeia A, which is 11,000 light-years from Earth.
Space Telescope Science Institut/STScI
Webb's image of ice giant Uranus shows off the planet's incredible rings and a bright haze covering its north polar cap (right). A bright cloud lies at the cap's edge and a second one is seen at left.
NASA/ESA/CSA/STScI
The James Webb Space Telescope captured 50,000 sources of near-infrared light in a new image of Pandora's Cluster, a megacluster of galaxies. The cluster acts like a magnifying glass, allowing astronomers to see more distant galaxies behind it.
NASA/ESA/CSA
Stars shine through the hazy material of the Chamaeleon I dark molecular cloud, which is 630 light-years away from Earth.
NASA/ESA/CSA/STScI/A. Pagan
The James Webb Space Telescope spotted NGC 346, one of the most dynamic star-forming regions near the Milky Way, located in a dwarf galaxy called the Small Magellanic Cloud.
NASA/ESA
Two galaxies, known as II ZW96, form a swirl shape while merging in the constellation Delphinus.
NASA/ESA/CSA/STScI
The James Webb Space Telescope revealed features of a new protostar forming.
NASA/ESA/CSA/STScI
The James Webb Space Telescope captured a new perspective of the Pillars of Creation in mid-infrared light. The dust of this star-forming region, rather than the stars themselves, is the highlight, and resembles ghostly figures.
NASA/ESA/CSA/STScI
Webb captured a highly detailed snapshot of the so-called Pillars of Creation, a vista of three looming towers made of interstellar dust and gas that's speckled with newly formed stars. The area, which lies within the Eagle Nebula about 6,500 light-years from Earth, had previously been captured by the Hubble Telescope in 1995, creating an image deemed "iconic" by space observers.
NASA/ESA/CSA/STScI/JPL-Caltech
The two stars in WR140 produce shells of dust every eight years that look like rings, as captured by the Webb telescope.
NASA/ESA/CSA/ASU/UA/UM/JWST PEARLs Team
The James Webb Space Telescope and Hubble Space Telescope contributed to this image of galactic pair VV 191. Webb observed the brighter elliptical galaxy (left) and spiral galaxy (right) in near-infrared light, and Hubble collected data in visible and ultraviolet light.
ESA/NASA/CSA/J. Lee
The James Webb Space Telescope captured spiral galaxy IC 5332, which is over 29 million light-years away. The observatory's MIRI instrument peered through interstellar dust to see the galaxy's "bones."
NASA/ESA/CSA/STScI
Webb captured the clearest view of the Neptune's rings in over 30 years.
NASA/ESA/CSA/PDRS4all
The inner region of the Orion Nebula as seen by the telescope's NIRCam instrument. The image reveals intricate details about how stars and planetary systems are formed.
NASA/ESA/CSA/STScI/Webb ERO Production Team
NASA released a mosaic image of the Tarantula Nebula on Tuesday, September 6. The image, which spans 340 light-years, shows tens of thousands of young stars that were previously obscured by cosmic dust.
NASA/ESA
A new image of the Phantom Galaxy, which is 32 million light-years away from Earth, combines data from the James Webb Space Telescope and the Hubble Space Telescope.
NASA/ESA/CSA/Jupiter ERS Team
NASA released an image of Jupiter on Monday, August 22, that shows the planet's famous Great Red Spot appearing white.
NASA/ESA/CSA/STScI
The James Webb Space Telescope captured the Cartwheel galaxy, which is around 500 million light-years away, in a photo released by NASA on August 2.
NASA/ESA/CSA/STScI
Webb's landscape-like view, called "Cosmic Cliffs," is actually the edge of a nearby, young, star-forming region called NGC 3324 in the Carina Nebula. The telescope's infrared view reveals previously invisible areas of star birth.
NASA/ESA/CSA/STScI
The five galaxies of Stephan's Quintet can be seen here in a new light. The galaxies appear to dance with one another, showcasing how these interactions can drive galactic evolution.
NASA/ESA/CSA/STScI
This side-by-side comparison shows observations of the Southern Ring Nebula in near-infrared light, left, and mid-infrared light, right, from NASA's Webb telescope. The Southern Ring Nebula is 2,000 light-years away from Earth. This large planetary nebula includes an expanding cloud of gas around a dying star, as well as a secondary star earlier on in its evolution.
NASA/ESA/CSA/STScI
President Joe Biden released one of Webb's first images on July 11, and it's "the deepest and sharpest infrared image of the distant universe to date," according to NASA. The image shows SMACS 0723, where a massive group of galaxy clusters act as a magnifying glass for the objects behind them. Called gravitational lensing, this created Webb's first deep field view of incredibly old and distant, faint galaxies.

Sign up for CNN’s Wonder Theory science newsletter. Explore the universe with news on fascinating discoveries, scientific advancements and more.

CNN  — 

The James Webb Space Telescope has captured a new stunning image of ice giant Uranus, with almost all its faint dusty rings on display.

The image is representative of the telescope’s significant sensitivity, NASA said, as the fainter rings have only been captured previously by the Voyager 2 spacecraft and the W.M. Keck Observatory on Maunakea in Hawaii.

Uranus has 13 known rings, with 11 of them visible in the new Webb image. Nine rings are classified as the main rings, while the other two are harder to capture due to their dusty makeup and were not discovered until the Voyager 2 mission’s flyby in 1986. Two other, faint outer rings not shown in this latest image were discovered in 2007 from images taken by NASA’s Hubble Space Telescope, and scientists hope Webb will capture them in the future.

“The ring system of a planet tells us a lot about its origins and formation,” said Dr. Naomi Rowe-Gurney, a postdoctoral research scientist and solar system ambassador for the Webb space telescope at NASA Goddard Space Flight Center in Greenbelt, Maryland, via email.

“Uranus is such a strange world with its sideways tilt and lack of internal heat that any clues we can get about its history are very valuable.”

Scientists anticipate that future Webb images will be able to capture all 13 rings. Rowe-Gurney also expects the telescope to uncover more on Uranus’ atmospheric composition, helping scientists better understand this unusual gas giant.

NASA/NASA
A November Hubble image of Uranus (left) captured the planet's bright polar cap, while the recent Webb image displayed more detail, with a subtle enhanced brightness at the cap's center.

The space observatory’s powerful Near-Infrared Camera, or NIRCam, can detect infrared light otherwise not visible to astronomers.

“The JWST gives us the ability to look at both Uranus and Neptune in a completely new way because we have never had a telescope of this size that looks in the infrared,” Rowe-Gurney said. “The infrared can show us new depths and features that are difficult to see from the ground with the atmosphere in the way and invisible to telescopes that look in visible light like Hubble.”

More on Uranus

Located 1.8 billion miles (nearly 3 billion kilometers) away from our sun, Uranus takes 84 years to complete a full rotation. The planet is unique in its tilt to its side, causing its rings to be displayed vertically, unlike Saturn’s horizontal ring system.

Surrounding Uranus’ north pole is a bright haze that NASA has previously reported as appearing when the pole is in direct sunlight during the summer. The atmospheric haze seems to get brighter each year, according to the space agency. With the exact mechanism behind the haze unknown, scientists are studying the polar cap using telescope images such as this new Webb image.

In the original images Voyager 2 took of Uranus, the planet had appeared as a blue ball with no features. In this new Webb image, similar to other recent images by the Hubble Space Telescope, storm clouds can be seen at the edge of the polar cap. Uranus’ tilt causes extreme seasons and this stormy weather, and scientists are monitoring and documenting the changes over time by comparing telescope images.

The NASA Hubble Space Telescope had also captured Uranus’ bright white polar cap in November, illuminating the growing brightness of the haze when observed in comparison with images from prior years. The new Webb image depicts the polar cap in greater detail than what is shown in the Hubble image, with a subtle brightening in the cap’s center and more pronounced storm clouds that can be seen around the edges.

Uranus was identified as a priority to study in 2022 by the National Academies of Sciences, Engineering, and Medicine. “Additional studies of Uranus are happening now, and more are planned in Webb’s first year of science operations,” NASA’s release said following the announcement.