Stay Updated on Developing Stories

The world's fastest supercomputer identified chemicals that could stop coronavirus from spreading, a crucial step toward a treatment

(CNN) The novel coronavirus presents an unprecedented challenge for scientists: The speed at which the virus spreads means they must accelerate their research.

But this is what the world's fastest supercomputer was built for.

Summit, IBM's supercomputer equipped with the "brain of AI," ran thousands of simulations to analyze which drug compounds might effectively stop the virus from infecting host cells.

The supercomputer identified 77 of them. It's a promising step toward creating the most effective treatment.

Researchers at Oak Ridge National Laboratory published their findings in the journal ChemRxiv.

Summit was built to solve the world's problems

Summit was commissioned by the US Department of Energy in 2014 for the purpose it's serving now -- solving the world's problems.

It's got the power of 200 petaflops, which means it has the computing speed of 200 quadrillion calculations per second, aka: It's 1 million times more powerful than the fastest laptop.

Summit, the world's most powerful supercomputer, modeled how different drug compounds might prevent the coronavirus from spreading to other cells.

At its station in Oak Ridge National Laboratory in Tennessee, Summit has identified patterns in cellular systems that precede Alzheimer's, analyzed genes that contribute to traits like opioid addiction and predicted extreme weather based on climate simulations.

How Summit fights coronavirus

Viruses infect host cells by injecting them with a "spike" of genetic material. Summit's job is to find drug compounds that could bind to that spike and potentially stop the spread.

Oak Ridge researcher Micholas Smith created a model of the coronavirus spike based on research published in January. With Summit, he simulated how the atoms and particles in the viral protein would react to different compounds.

The supercomputer ran simulations of over 8,000 compounds that could bind to the spike protein of the virus, which could limit its ability to spread to host cells. Summit identified 77 of them and ranked them based on how likely they were to bind to the spike.

What's next

The team will run the simulations on Summit again, using a more accurate model of the coronavirus' spike that was published this month.

For all its power, though, Summit can only do so much. It provided the first step in analysis: identifying promising compounds. Experimental studies are required next to prove which chemicals work best.

"Our results don't mean that we have found a cure or treatment for the coronavirus," said Jeremy Smith, director of the University of Tennessee/Oak Ridge National Laboratory Center for Molecular Biophysics, in a statement.

But the findings could inform future studies.

"Only then will we know whether any of them exhibit the characteristics needed to mitigate this virus."

CORRECTION: The headline and the piece have been corrected to say the supercomputer's work is a crucial step toward a treatment for coronavirus, not a vaccine.

Outbrain